企業需要積極的提升他們的數據管理能力。這並非意味著他們應該制定繁瑣的流程和監督機制。明智的企業會配合他們的數據活動的生命周期制定靈活的流程和功能:根據業務需求啟動更輕更嚴格、更強大的功能,並根據需求的增加來提升質量或精度。
壹些企業正在利用新興技術來應對新的數據源,但大多數企業仍然面臨著需要努力管理好他們已經掌握或者應當掌握的數據信息的困境,而當他們試圖部署大數據功能時,發現自己還需要面對和處理新的以及當下實時的數據。
為了能夠實現持久成功的大數據項目,企業需要把重點放在如下五個主要領域。
1、確立明確的角色分工和職責範圍。
對於您企業環境中的所有的數據信息,您需要對於這些數據信息所涉及的關鍵利益相關者、決策者有壹個清晰的了解和把控。當數據信息在企業的系統傳輸過程中及其整個生命周期中,角色分工將發生變化,而企業需要對這些變化有壹個很好的理解。當企業開始部署大數據項目之後,務必要明確識別相關數據的關鍵利益相關者,並做好這些數據信息的完善和叠代工作。
2、加強企業的數據治理和數據管理功能。
確保您企業的進程足夠強大,能夠滿足和支持大數據用戶和大數據技術的需求。進程可以是靈活的,並應充分考慮到業務部門和事務部門的需求,這些部門均伴有不同程度的嚴謹性和監督要求。
確保您企業的參考信息架構已經更新到包括大數據。這樣做會給未來的項目打好最好的使用大數據技術和適當的信息管理能力的基礎。
確保您企業的元數據管理功能足夠強大,能夠包括並關聯所有的基本元數據組件。隨著時間的推移,進行有序的分類,滿足業務規範。
壹旦您開始在您企業的生產部門推廣您的解決方案時,您會希望他們長期持續的使用該解決方案,所以對架構功能的定義並監督其發揮的作用是至關重要的。確保您企業的治理流程包括IT控制的角色,以幫助企業的利益相關者們進行引導項目,以最佳地利用這些數據信息。其還應該包括您企業的安全和法務團隊。根據我們的經驗,使用現有的監督機制能夠達到最佳的工作狀態,只要企業實施了大數據應用,並專註於快速在進程中處理應用程序,而不是阻礙進程的通過。
3、了解環境中的數據的目的和要求的精度水平,並相應地調整您企業的期望值和流程。
無論其是壹個POC,或壹個已經進入主流業務流程的項目,請務必確保您對於期望利用這些數據來執行什麽任務,及其質量和精度處於何種級別有壹個非常清晰的了解。這種方法將使得企業的項目能夠尋找到正確的數據來源和利益相關者,以更好地評估這些數據信息的價值和影響,進而讓您決定如何最好地管理這些數據信息。更高的質量和精度則要求更強大的數據管理和監督能力。
隨著您企業大數據項目的日趨成熟,考慮建立壹套按照數據質量或精確度分類的辦法,這將使得數據用戶得以更好的了解他們所使用的是什麽,並相應地調整自己的期望值。例如,您可以使用白色、藍色或金色來分別代表原始數據、清理過的數據,經過驗證可以有針對性的支持分析和使用的數據。有些企業甚至進壹步完善了這壹分類方法:將數據從1到5進行分類,其中1是原始數據,而5是便於理解,經過整理的、有組織的數據。
4、將對非結構化的內容的管理納入到您企業的數據管理能力。
非結構化數據壹直是企業業務運營的壹部分,但既然現在我們已經有了更好的技術來探索,分析和這些非結構化的內容,進而幫助改善業務流程和工業務洞察,所以我們最終將其正式納入我們的數據管理是非常重要的。大多數企業目前都被困在了這壹步驟。
數據庫中基本的、非結構化的數據是以評論的形式或者自由的形式存在的,其至少是數據庫的壹部分,應該被納入到數據管理。但挖掘這些數據信息則是非常難的。
數字數據存儲在傳統的結構化數據庫和業務流程外,很少有許多的治理範圍分組和數據管理的實現,除了當其被看作是壹個技術問題時。壹般來說,除了嚴格遵守相關的安全政策,今天的企業尚未對其進行真正有效的管理。當您的企業開始大跨步實現了大數據項目之後,您會發現這壹類型的數據信息迅速進入了您需要管理的範疇,其輸出會影響您企業的商業智能解決方案或者甚至是您企業的業務活動。積極的考慮將這些數據納入到您企業的數據管理功能的範圍,並明確企業的所有權,並記錄好這些數據信息的諸如如何使用、信息來源等等資料。
不要采取“容易的輕松路線”,單純依靠大數據技術是您企業唯壹正式的非結構化數據管理的過程。隨著時間的推移,企業將收集越來越多的非結構化數據,請務必搞清楚哪些數據是好的,哪些是壞的,他們分別來自何處,以及其使用是否壹致,將變得越來越重要,甚至在其生命周期使用這個數據都是至關重要的。
要保持這種清晰,您可以使用大數據和其他工具,以了解您企業所收集的數據信息,確定其有怎樣的價值,需要怎樣的管理,這是至關重要的。大多數進入您企業的大數據系統的非結構化數據都已經經過壹些監控了,但通常是作為壹個BLOB(binarylargeobject)二進制大對象和非結構化的形式進行的。隨著您的企業不斷的在您的業務流程中“發掘”出這壹類型的數據,其變得更加精確和有價值。其可能還具有額外的特點,符合安全,隱私或法律和法規的元素要求。最終,這些數據塊可以成為新的數據元素或添加到現有的數據,但您必須有元數據對其進行描述和管理,以便盡可能最有效地利用這些數據。
5、正式在生產環境運行之前進行測試。
如果您的企業做的是壹次性的分析或完整的壹次性的試點,這可能並不適用於您的企業,但對大多數企業來說,他們最初的大數據工作將迅速發展,他們找到壹個可持續利用他們已經挖掘出的極具價值的信息的需求。這意味著需要在您的沙箱環境中進行測試,然後才正式的在您的生產環境運。