Abstract
摘要
A FPGA-based servo control IC for use in a permanent magnet linear synchronous motor (PMLSM) drive is presented in this paper. 本文介紹了用於永磁直線同步電機(PMLSM)的、以現場可編程門陣列(FPGA)為基礎的伺服控制IC. Mathematic model of the PMLSM is presented and the vector control scheme is used in the current loop of the PMLSM drive.對PMLSM的數學模型做了介紹,在PMLSM驅動器的電流環中采用了矢量控制方案。Then, to increase the performance of the PMLSM drive, an adaptive fuzzy controller (AFC) constructed by a fuzzy basis function and a parameter adjustable mechanism is derived and applied to the position loop of PMLSM drive to cope with the dynamic uncertainty and external load effect. 然後,為了提高PMLSM驅動器的性能,用模糊基函數構建的自適應模糊控制器(AFC),以及壹個參數可調機理(構)被導出並用於PMLSM驅動器的位置環,以配合動態不確定性和外部載荷的影響。After that, a FPGA-based control IC is designed to realize the controllers. The FPGA-based control IC has two IPs (Intellectual Properties), an Nios embedded processor IP and an application IP. 在那以後設計了壹種以FPGA為基的控制IC來實現該控制器。基於FPGA的控制IC有兩項知識產權,壹項是Nios嵌入式處理器知識產權,壹項是應用知識產權。The Nios processor is used to perform the function of an adaptive fuzzy position controller for PMLSM drive. Nios處理器用來完成用於PMLSM驅動器的自適應模糊位置控制器的功能。The application IP is used to perform the current vector
control of the PMLSM drive, which includes SVPWM generation, coordinate transformation, PI controller and the pulse detection of the quadrature encoder. 應用知識產權則用來完成PMLSM驅動器的電流矢量控制,它包括SVPWM(空間電壓矢量脈寬調制)的發生,坐標變換,比例積分控制器,以及正交編碼器的脈沖檢測。
At last, an experimental system has been set up and some experimental results have been demonstrated. 最後,建立了壹個實驗系統,並實驗證實了壹些實驗結果。The advantages of superior power density, high- performance motion control with fast speed and better accuracy, are such that permanent magnet linear synchronous motors (PMLSM) are being increasingly used in many automation control fields as actuators [1- 2], including computer-controlled machining tools, X-Y driving devices, robots, semiconductor manufacturing equipment, transport propulsion, etc. 優勢的功率密度,具有高速和較好精度的高性能運動控制的優越性,使PMLSM在很多自動控制領域作為執行器正在得到越來越多的采用1-2,包括計算機控制的機床、X-Y驅動裝置、機器人、半導體制造設備、運輸推進器等。However, the PMLSM does not use conventional gears or ball screws, so uncertainty in the drive system greatly affects servo performance [3].不過,PMLSM不采用常規的軸承和滾珠絲杠,因此驅動系統的不確定性會大大影響伺服性能。 These uncertainties include parameter variations, external load disturbance, friction force and unknown dynamics. 這些不確定性包括參數變化、外部載荷的擾動、摩擦力和未知的動力學特性。They always diminish the performance of the pre-designed PMLSM driving system.它們總是降低預先設計的PMLSM驅動系統的性能。 To solve the above problems, an intelligent control techniques [4-5] such as fuzzy control, neural networks control, adaptive fuzzy control, have been developed and applied to the position control of servo motor drives to yield high operating performance.為了解決上述問題,像模糊控制、神經網絡控制、自適應模糊控制等智能技術已得到開發,並應用到伺服電機驅動器的位置控制,來獲得高的運行性能。